An. Real. Acad. Farm. vol 79 nº 4 2013 - page 117

Alexia Gómez & col.
632
39. López-­‐Torres, M.; Barja, G. Lowered methionine ingestion as responsible for the decrease
in rodent mitochondrial oxidative stress in protein and dietary restriction. Possible
implications for humans.
Biochim Biophys Acta
2008
; 1780, 1337-­‐1347
40.
Pamplona, R.; Barja, G. Highly resistant macromolecular components and low rate of
generation of endogenous damage: two key traits of longevity.
Ageing Res Rev
2007
; 6,
189–210
41.
Pamplona, R.; Portero-­‐Otín, M.; Requena, J.R.; Thorpe, S.R.; Herrero, A.; Barja, G. A low
degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-­‐
derived protein modification in heart mitochondria of the longevous pigeon than in the
short-­‐lived rat.
Mech Ageing Dev
1999
; 106, 283-­‐296
42.
Buttemer, W.A.; Battam, H.; Hulbert, A.J. Fowl play and the price of petrel: long-­‐living
Procellariformes have peroxidation-­‐resistant membrane composition compared with
short-­‐living Galliformes.
Biol Lett
2008
; 4, 351-­‐354
43.
Mitchell, T.W.; Buffenstein, R.; Hulbert, A.J. Membrane phospholipid composition may
contribute to exceptional longevity of the naked mole-­‐rat (Heterocephalus glaber): A
comparative study using shotgun lipidomics.
Exp Gerontol
2007
; 42, 1053-­‐1062
44.
Hulbert, A.J.; Beard, L.A.; Grigg, G.C. The exceptional longevity of an egg-­‐laying mammal,
the short-­‐beaked echidna (Tachyglossus aculeatus) is associated with peroxidation-­‐
resistant membrane composition.
Exp Gerontol
2008
; 43, 729-­‐733
45.
Haddad, L.S.; Kelbert, L.; Hulbert, A.J. Extended longevity of queen honey bees compared
to workers is associated with peroxidation-­‐resistamt membranes.
Exp Gerontol
2007
; 42,
601-­‐609
46.
Hulbert, A.J.; Faulks, S.C.; Harper, J.M.; Miller, R.A.; Buffenstein, R. Extended longevity of
wild-­‐derived mice is associated with peroxidation-­‐resistant membranes.
Mech Ageing Dev
2006
; 127, 653-­‐657
47.
Buffenstein, R. The naked mole-­‐rat: a new long-­‐living model for human aging research
? J
Gerontol
2005
; 60, 1369–1377
48.
Choi, J.H.; Kim, J.I.; Kim, D.W.; Moon, Y.S.; Chung, H.Y.; Yu, B.P. Analysis of lipid
composition and hydroxyl radicals in brain membranes of senescence-­‐accelerated mice.
Age
1996
; 19, 1–5
49.
Park, J.W.; Choi, C.H.; Kim, M.S.; Chung, M.H. Oxidative status in senescence-­‐accelerated
mice.
J Gerontol
1996
; 51, B337–B345
50.
Matsugo, S.; Kitagawa, T.; Minami, S.; Esashi, Y.; Oomura, Y.; Tokumaru, S.; Kojo, S.;
Matsushima, K.; Sasaki, K. Age-­‐dependent changes in lipid peroxide levels in peripheral
organs, but not in brain, in senescence-­‐accelerated mice.
Neurosci Lett
2000
; 278, 105–
108 51.
Spiteller, G. Is lipid peroxidation of polyunsaturated fatty acids the only source of free
radicals that induce aging and age-­‐related diseases?
Rejuv Res
2010
; 13, 91-­‐103
52. Herrero, A.; Portero-­‐Otín, M.; Bellmunt, M.J.; Pamplona, R.; Barja, G. Effect of the degree of
fatty acid unsaturation of rat heart mitochondria on their rates of H2O2 production and
lipid and protein oxidative damage.
Mech Ageing Dev
2001
; 122, 427-­‐443
53.
Guillou, H.; Zadravec, D.; Martin, P.G.; Jacobsson, A. The key roles of elongases and
desaturases in mammalian fatty acid metabolism: Insights from transgenic mice.
Prog
Lipid Res
2010
; 49, 186-­‐99
54.
Nakamura, M.T.; Nara, T.Y. Structure, function, and dietary regulation of delta6, delta5,
and delta9 desaturases.
Annu Rev Nutr
2004
; 24, 345-­‐76
55.
Hulbert, A.J.; Rana, T.; Couture, P. The acyl composition of mammalian phospholipids: an
allometric analysis.
Comput Biochem Physiol B Biochem Mol Biol
2002
; 132, 515–527
1...,107,108,109,110,111,112,113,114,115,116 118,119,120,121,122,123,124,125,126,127,...190
Powered by FlippingBook