A. Gómez et col.
            
          
        
        
          270
        
        
          
            7. REFERENCES
          
        
        
          1. Yan, L.; D.E. Vatner, D.E.; O’Connor, J.P.; Ivessa, A.; Ge, H.; Chen, W.; Hirotani, S.; Ishikawa, Y.;
        
        
          Sadoshima, J.; Vatner, S.F. Type 5 adenylyl cyclase disruption increases longevity and
        
        
          protects against stress.
        
        
          
            Cell
          
        
        
          , 2007;
        
        
          
            130
          
        
        
          , 247–258.
        
        
          2. Sanchez-‐Roman, I.; Gomez, J.; Naudi, A.; Ayala, V.; Portero-‐Otín, M.; Lopez-‐Torres, M.;
        
        
          Pamplona, R.; Barja, G. The beta-‐blocker atenolol lowers the longevity-‐related degree of
        
        
          fatty acid unsaturation, decreases protein oxidative damage, and increases extracellular
        
        
          signal-‐regulated kinase signaling in the heart of C57BL/6 mice
        
        
          
            . Rejuv Res
          
        
        
          2010;
        
        
          
            13
          
        
        
          , 683–
        
        
          693 3. Barja, G.; Cadenas, S.; Rojas, C.; Pérez-‐Campo, R.; López-‐Torres, M. Low mitochondrial free
        
        
          radical production per unit O2 consumption can explain the simultaneous presence of
        
        
          high longevity and high aerobic metabolic rate in birds.
        
        
          
            Free Radic Res
          
        
        
          1994,
        
        
          
            21
          
        
        
          , 317–327
        
        
          4. Barja, G.; Mitochondrial oxygen consumption and reactive oxygen species production are
        
        
          independently modulated: implications for aging studies.
        
        
          
            Rejuv Res
          
        
        
          2007;
        
        
          
            10
          
        
        
          , 215–224
        
        
          5. Pamplona, R.; Portero Otín, M.; Riba, D.; Ruiz, C.; Prat, J.; Bellmunt, M.J.; Barja, G.
        
        
          Mitochondrial membrane peroxidizability index is inversely related to maximum life span
        
        
          in mammals.
        
        
          
            J Lipid Res
          
        
        
          1998;
        
        
          
            39
          
        
        
          , 1989-‐94
        
        
          6. Hulbert, A.J.; Pamplona, R.; Buffestein, R.; Buttemer, W.A. Life and death: metabolic rate,
        
        
          membrane composition and life span of animals.
        
        
          
            Physiological Reviews
          
        
        
          2007;
        
        
          
            87
          
        
        
          , 1175-‐
        
        
          1213
        
        
          7. Hagopian, K.; Chen, Y.; Simmons Domer, K.; Soo Hoo, R.; Bentley, T.; McDonald, R.B.; Ramsey,
        
        
          J.J. Caloric restriction influences hydrogen peroxide generation in mitochondrial sub-‐
        
        
          populations from mouse liver.
        
        
          
            J Bioenerg Biomembr
          
        
        
          2011;
        
        
          
            43
          
        
        
          , 227-‐36
        
        
          8. Gredilla, R.; Barja, G. Caloric restriction, aging and oxidative stress.
        
        
          
            Endocrinology
          
        
        
          2005;
        
        
          
            146
          
        
        
          ,
        
        
          3713–3717
        
        
          9. Sanz, A.; Caro, P.; Barja, G. Protein restriction without strong caloric restriction decreases
        
        
          mitochondrial oxygen radical production and oxidative DNA damage in rat liver.
        
        
          
            J
          
        
        
          
            Bioenerg Biomembr
          
        
        
          2004;
        
        
          
            36
          
        
        
          , 545–552
        
        
          10. Sanz, A.; Caro, P.; Ayala, V.; Portero-‐Otin, M.; Pamplona, R.; Barja, G. Methionine restriction
        
        
          decreases mitochondrial oxygen radical generation and leak as well as oxidative damage
        
        
          to mitochondrial DNA and proteins.
        
        
          
            FASEB J
          
        
        
          2006a;
        
        
          
            20
          
        
        
          , 1064–1073
        
        
          11. Maresca, B., Cossins, A.R. Fatty acid feedback and fluidity.
        
        
          
            Nature
          
        
        
          1993;
        
        
          
            365
          
        
        
          , 606–607.
        
        
          12. Hoch, F.L. Cardiolipins and membrane function.
        
        
          
            Biochim. Biophys Acta
          
        
        
          1992;
        
        
          
            1113
          
        
        
          , 71–133.
        
        
          13. Pamplona, R.; Portero-‐Otín, M.; Sanz, A.; Requena, J.; Barja, G. Modification of the longevity-‐
        
        
          related degree of fatty acid unsaturation modulates oxidative damage to proteins and
        
        
          mitochondrial DNA in liver and brain
        
        
          
            . Experimental Gerontology
          
        
        
          2004;
        
        
          
            39
          
        
        
          , 725–733
        
        
          14. Sato, A., Huang, M.Z., Watanabe, S., Okuyama, H., Nakamoto, H., Rada´k, Z., Goto, S. Protein
        
        
          carbonyl content roughly reflects the unsaturation of lipids in skeletal muscle but not in
        
        
          other tissues of stroke-‐prone spontaneously hypertensive strain (SHRSP) rats fed
        
        
          different fats and oils.
        
        
          
            Biol. Pharm. Bull
          
        
        
          . 1998;
        
        
          
            21
          
        
        
          , 1271–1276.
        
        
          15. Moreau, R.; Nguyen, BT.; Doneanu, CE.; Hagen, T.M. Reversal by aminoguanidine of the age-‐
        
        
          related increase in glycoxidation and lipoxidation in the cardiovascular system of Fischer
        
        
          344 rats.
        
        
          
            Biochem Pharmacol
          
        
        
          , 2005;
        
        
          
            69
          
        
        
          , 29–40.
        
        
          16. Pratt, D.A.; Tallman, K.A.; Porter, N.A. Free Radical Oxidation of Polyunsaturated Lipids:
        
        
          New Mechanistic Insights and the Development of Peroxyl Radical Clocks.
        
        
          
            Acc Chem Res
          
        
        
          ,
        
        
          2011;
        
        
          
            44
          
        
        
          , 458-‐67.
        
        
          17. Holman, R.T. Autoxidation of fats and related substances. In: Holman RT, Lundberg WO,
        
        
          Malkin T (eds) Progress in chemistry of fats and other lipids.
        
        
          
            Pergamon Press, London
          
        
        
          ,
        
        
          1954; 51–98