An. R. Acad. Farm. vol 79 nº 2 2013 - page 99

A. Gómez et col.
270
7. REFERENCES
1. Yan, L.; D.E. Vatner, D.E.; O’Connor, J.P.; Ivessa, A.; Ge, H.; Chen, W.; Hirotani, S.; Ishikawa, Y.;
Sadoshima, J.; Vatner, S.F. Type 5 adenylyl cyclase disruption increases longevity and
protects against stress.
Cell
, 2007;
130
, 247–258.
2. Sanchez-­‐Roman, I.; Gomez, J.; Naudi, A.; Ayala, V.; Portero-­‐Otín, M.; Lopez-­‐Torres, M.;
Pamplona, R.; Barja, G. The beta-­‐blocker atenolol lowers the longevity-­‐related degree of
fatty acid unsaturation, decreases protein oxidative damage, and increases extracellular
signal-­‐regulated kinase signaling in the heart of C57BL/6 mice
. Rejuv Res
2010;
13
, 683–
693 3. Barja, G.; Cadenas, S.; Rojas, C.; Pérez-­‐Campo, R.; López-­‐Torres, M. Low mitochondrial free
radical production per unit O2 consumption can explain the simultaneous presence of
high longevity and high aerobic metabolic rate in birds.
Free Radic Res
1994,
21
, 317–327
4. Barja, G.; Mitochondrial oxygen consumption and reactive oxygen species production are
independently modulated: implications for aging studies.
Rejuv Res
2007;
10
, 215–224
5. Pamplona, R.; Portero Otín, M.; Riba, D.; Ruiz, C.; Prat, J.; Bellmunt, M.J.; Barja, G.
Mitochondrial membrane peroxidizability index is inversely related to maximum life span
in mammals.
J Lipid Res
1998;
39
, 1989-­‐94
6. Hulbert, A.J.; Pamplona, R.; Buffestein, R.; Buttemer, W.A. Life and death: metabolic rate,
membrane composition and life span of animals.
Physiological Reviews
2007;
87
, 1175-­‐
1213
7. Hagopian, K.; Chen, Y.; Simmons Domer, K.; Soo Hoo, R.; Bentley, T.; McDonald, R.B.; Ramsey,
J.J. Caloric restriction influences hydrogen peroxide generation in mitochondrial sub-­‐
populations from mouse liver.
J Bioenerg Biomembr
2011;
43
, 227-­‐36
8. Gredilla, R.; Barja, G. Caloric restriction, aging and oxidative stress.
Endocrinology
2005;
146
,
3713–3717
9. Sanz, A.; Caro, P.; Barja, G. Protein restriction without strong caloric restriction decreases
mitochondrial oxygen radical production and oxidative DNA damage in rat liver.
J
Bioenerg Biomembr
2004;
36
, 545–552
10. Sanz, A.; Caro, P.; Ayala, V.; Portero-­‐Otin, M.; Pamplona, R.; Barja, G. Methionine restriction
decreases mitochondrial oxygen radical generation and leak as well as oxidative damage
to mitochondrial DNA and proteins.
FASEB J
2006a;
20
, 1064–1073
11. Maresca, B., Cossins, A.R. Fatty acid feedback and fluidity.
Nature
1993;
365
, 606–607.
12. Hoch, F.L. Cardiolipins and membrane function.
Biochim. Biophys Acta
1992;
1113
, 71–133.
13. Pamplona, R.; Portero-­‐Otín, M.; Sanz, A.; Requena, J.; Barja, G. Modification of the longevity-­‐
related degree of fatty acid unsaturation modulates oxidative damage to proteins and
mitochondrial DNA in liver and brain
. Experimental Gerontology
2004;
39
, 725–733
14. Sato, A., Huang, M.Z., Watanabe, S., Okuyama, H., Nakamoto, H., Rada´k, Z., Goto, S. Protein
carbonyl content roughly reflects the unsaturation of lipids in skeletal muscle but not in
other tissues of stroke-­‐prone spontaneously hypertensive strain (SHRSP) rats fed
different fats and oils.
Biol. Pharm. Bull
. 1998;
21
, 1271–1276.
15. Moreau, R.; Nguyen, BT.; Doneanu, CE.; Hagen, T.M. Reversal by aminoguanidine of the age-­‐
related increase in glycoxidation and lipoxidation in the cardiovascular system of Fischer
344 rats.
Biochem Pharmacol
, 2005;
69
, 29–40.
16. Pratt, D.A.; Tallman, K.A.; Porter, N.A. Free Radical Oxidation of Polyunsaturated Lipids:
New Mechanistic Insights and the Development of Peroxyl Radical Clocks.
Acc Chem Res
,
2011;
44
, 458-­‐67.
17. Holman, R.T. Autoxidation of fats and related substances. In: Holman RT, Lundberg WO,
Malkin T (eds) Progress in chemistry of fats and other lipids.
Pergamon Press, London
,
1954; 51–98
1...,89,90,91,92,93,94,95,96,97,98 100,101,102,103,104,105,106,107,108,109,...212
Powered by FlippingBook