Control hipotalámico de las interacciones neuroendocrinas
107
15.
Darquie, A., et al.(2001) Transient decrease in water diffusion observed in human
occipital cortex during visual stimulation
.
Proc Natl Acad Sci U S A. 98(16): p. 9391-‐5.
16.
Alkan, A., et al.(2008) Diffusion-‐weighted imaging features of brain in obesity
.
Magn
Reson Imaging. 26(4): p. 446-‐50.
17.
Mueller, K., et al.(2011) Sex-‐dependent influences of obesity on cerebral white matter
investigated by diffusion-‐tensor imaging
.
PLoS One. 6(4): p. e18544.
18.
Mahankali, S., et al.(2000) In vivo fMRI demonstration of hypothalamic function following
intraperitoneal glucose administration in a rat model
.
Magn Reson Med. 43(1): p.
155-‐9.
19.
Matsuda, M., et al.(1999) Altered hypothalamic function in response to glucose ingestion
in obese humans
.
Diabetes. 48(9): p. 1801-‐6.
20.
Stark, J.A., et al.(2006) Functional magnetic resonance imaging and c-‐Fos mapping in
rats following an anorectic dose of m-‐chlorophenylpiperazine
.
Neuroimage. 31(3): p.
1228-‐37.
21.
Dodd, G.T., S.R. Williams, and S.M. Luckman(2010) Functional magnetic resonance
imaging and c-‐Fos mapping in rats following a glucoprivic dose of 2-‐deoxy-‐D-‐glucose
.
J
Neurochem. 113(5): p. 1123-‐32.
22.
Li, J., et al.(2012) Correlations of macronutrient-‐induced functional magnetic resonance
imaging signal changes in human brain and gut hormone responses
.
Am J Clin Nutr.
96(2): p. 275-‐82.
23.
Min, D.K., et al.(2011) Changes in differential functional magnetic resonance signals in
the rodent brain elicited by mixed-‐nutrient or protein-‐enriched meals
.
Gastroenterology.
141(5): p. 1832-‐41.
24.
Killgore, W.D., et al.(2003) Cortical and limbic activation during viewing of high-‐ versus
low-‐calorie foods
.
Neuroimage. 19(4): p. 1381-‐94.
25.
Smeets, P.A., et al.(2005) Functional magnetic resonance imaging of human hypothalamic
responses to sweet taste and calories
.
Am J Clin Nutr. 82(5): p. 1011-‐6.
26.
Berthoud, H.R.(2004) Neural control of appetite: cross-‐talk between homeostatic and
non-‐homeostatic systems
.
Appetite. 43(3): p. 315-‐7.
27.
Batterham, R.L., et al.(2007) PYY modulation of cortical and hypothalamic brain areas
predicts feeding behaviour in humans
.
Nature. 450(7166): p. 106-‐9.
28.
Malik, S., et al.(2008) Ghrelin modulates brain activity in areas that control appetitive
behavior
.
Cell Metab. 7(5): p. 400-‐9.
29.
Purnell, J.Q., et al.(2011) Brain functional magnetic resonance imaging response to
glucose and fructose infusions in humans
.
Diabetes Obes Metab. 13(3): p. 229-‐34.
30.
Vidarsdottir, S., et al.(2007) Glucose ingestion fails to inhibit hypothalamic neuronal
activity in patients with type 2 diabetes
.
Diabetes. 56(10): p. 2547-‐50.
31.
Tomasi, D., et al.(2009) Association of body mass and brain activation during gastric
distention: implications for obesity
.
PLoS One. 4(8): p. e6847.
32.
Baicy, K., et al.(2007) Leptin replacement alters brain response to food cues in genetically
leptin-‐deficient adults
.
Proc Natl Acad Sci U S A. 104(46): p. 18276-‐9.
33.
Guthoff, M., et al.(2010) Insulin modulates food-‐related activity in the central nervous
system
.
J Clin Endocrinol Metab. 95(2): p. 748-‐55.
34.
Jones, R.B., et al.(2012) Functional neuroimaging demonstrates that ghrelin inhibits
the central nervous system response to ingested lipid
.
Gut. 61(11): p. 1543-‐51.
35.
Pautler, R.G.(2004) In vivo, trans-‐synaptic tract-‐tracing utilizing manganese-‐enhanced
magnetic resonance imaging (MEMRI)
.
NMR Biomed. 17(8): p. 595-‐601.