B. Lizarbe y S. Cerdán
108
36.
Andrew, R.D., et al.(1981) Dye transfer through gap junctions between neuroendocrine
cells of rat hypothalamus
.
Science. 211(4487): p. 1187-‐9.
37.
Jaffe, L.F.(2008) Calcium waves
.
Philos Trans R Soc Lond B Biol Sci. 363(1495): p. 1311-‐6.
38.
Jaffe, L.F.(2010) Fast calcium waves
.
Cell Calcium. 48(2-‐3): p. 102-‐13.
39.
Lee, J.H., et al.(2005) Manganese-‐enhanced magnetic resonance imaging of mouse
brain after systemic administration of MnCl2: dose-‐dependent and temporal evolution of
T1 contrast
.
Magn Reson Med. 53(3): p. 640-‐8.
40.
Just, N., et al.(2011) Effect of manganese chloride on the neurochemical profile of the rat
hypothalamus
.
J Cereb Blood Flow Metab. 31(12): p. 2324-‐33.
41.
Zwingmann, C., D. Leibfritz, and A.S. Hazell(2003) Energy metabolism in astrocytes and
neurons treated with manganese: relation among cell-‐specific energy failure, glucose
metabolism, and intercellular trafficking using multinuclear NMR-‐spectroscopic analysis
.
J
Cereb Blood Flow Metab. 23(6): p. 756-‐71.
42.
Zwingmann, C., D. Leibfritz, and A.S. Hazell(2004) Brain energy metabolism in a sub-‐
acute rat model of manganese neurotoxicity: an ex vivo nuclear magnetic resonance study
using [1-‐
13
C]glucose
.
Neurotoxicology. 25(4): p. 573-‐87.
43.
Aoki, I., et al.(2002) Dynamic activity-‐induced manganese-‐dependent contrast magnetic
resonance imaging (DAIM MRI)
.
Magn Reson Med. 48(6): p. 927-‐33.
44.
Aoki, I., et al.(2004) In vivo detection of neuroarchitecture in the rodent brain using
manganese-‐enhanced MRI
.
Neuroimage. 22(3): p. 1046-‐59.
45.
Chaudhri, O.B., et al.(2006) Differential hypothalamic neuronal activation following
peripheral injection of GLP-‐1 and oxyntomodulin in mice detected by manganese-‐
enhanced magnetic resonance imaging
.
Biochem Biophys Res Commun. 350(2): p. 298-‐
306.
46.
Kuo, Y.T., et al.(2006) Manganese-‐enhanced magnetic resonance imaging (MEMRI)
without compromise of the blood-‐brain barrier detects hypothalamic neuronal activity in
vivo
.
NMR Biomed. 19(8): p. 1028-‐34.
47.
Hankir, M.K., et al.(2011) Peptide YY 3-‐36 and pancreatic polypeptide differentially
regulate hypothalamic neuronal activity in mice in vivo as measured by manganese-‐
enhanced magnetic resonance imaging
.
J Neuroendocrinol. 23(4): p. 371-‐80.
48.
Parkinson, J.R., O.B. Chaudhri, and J.D. Bell(2009) Imaging appetite-‐regulating pathways in
the central nervous system using manganese-‐enhanced magnetic resonance imaging
.
Neuroendocrinology. 89(2): p. 121-‐30.
49.
Parkinson, J.R., et al.(2009) Differential patterns of neuronal activation in the brainstem
and hypothalamus following peripheral injection of GLP-‐1, oxyntomodulin and lithium
chloride in mice detected by manganese-‐enhanced magnetic resonance imaging (MEMRI)
.
Neuroimage. 44(3): p. 1022-‐31.
50.
Delgado, T.C., et al.(2011) Neuroglial metabolic compartmentation underlying leptin
deficiency in the obese ob/ob mice as detected by magnetic resonance imaging and
spectroscopy methods
.
J Cereb Blood Flow Metab. 31(12): p. 2257-‐66.
51.
Anastasovska, J., et al.(2012) Fermentable carbohydrate alters hypothalamic neuronal
activity and protects against the obesogenic environment
.
Obesity (Silver Spring). 20(5): p.
1016-‐23.
52.
Just, N. and R. Gruetter(2011) Detection of neuronal activity and metabolism in a
model of dehydration-‐induced anorexia in rats at 14.1 T using manganese-‐enhanced
MRI and
1
H MRS
.
NMR Biomed. 24(10): p. 1326-‐36.
53.
Gutman, D.A., et al.(2013) Mapping of the mouse olfactory system with manganese-‐
enhanced magnetic resonance imaging and diffusion tensor imaging
.
Brain Struct Funct.
218(2): p. 527-‐37.