J. R. Lacadena y F. Mayor Menéndez
168
7.
Kobel, H.R.; Brun, R.B.; Fischberg, M. Nuclear transplantation with melanophores, ciliated
epidermal cells, and the established cell line A-‐8 in Xenopus laevis. J. Embryol. Exp.
Morphol. 29, 539-‐547 (1973).
8.
Di Berardino, M.A.; Hoffner, N.J. The current status of cloning and nuclear reprogramming
in amphibian eggs. En Differentiation and Neoplasia (Results and Problems in Cell
Differentiation, vol. 11); (edited by McKinell, R.G.; Di Berardino, M.A.; Blumenfeld, M.;
Bergard, R.D., Eds.; Springer Verlag; Berlin, 1980; p 53-‐64.
9.
.; Perimann, T. Mature cells can be reprogrammed to become
Nobel Prize in Physiology or Medicine – Advanced Information.
(2012)
10.
strategy of the genes; a discussion of some aspects of theoretical
biology; Allen & Unwin; Londres, 1957.
11.
McGrath, J.; Solter, D. Inability of mouse blastomere nuclei transferred to enucleated
zygotes to support development in vitro. Science 226, 1317-‐1318 (1984).
12.
Wilmut, I.; Schnieke, A.E.; McWhir, J.; Kind, A.J.; Campbell, K.H.S. Viable offspring derived
from fetal and adult mammalian cells. Nature 385, 810-‐813 (1997).
13.
Lacadena, J.R. Genética y Sociedad. Real Acad. Nac. Farmacia; Madrid, 2011; p. 147. (El
contenido de este apartado está necesariamente basado, aunque debidamente
actualizado, en el texto publicado dentro del Discurso leído por el autor en la Sesión
Inaugural del Curso de la Real Academia Nacional de Farmacia celebrada el 13 de enero
de 2011).
14.
Ver revisiones por Hochedlinger, K.; Plath, K. Epigenetic reprogramming and induced
pluripotency. Development 136, 509-‐523 (2009). Izpisúa Belmonte, J.C.; Ellis, J.;
Hochedlinger, K.; Yamanaka, S. Induced pluripotent stem cells and reprogramming: seeing
the science through the hype. Nature Reviews Genetics 10, 878-‐883 (2009). Hochedlinger,
K. El poder terapéutico de nuestras células. Investigación y Ciencia (julio 2010), 24-‐31
(2010).
15.
Takahashi, K.; Mitsui, K.; Yamanaka, S. Role of Eras in promoting tumour-‐like properties in
mouse embryonic stem cells. Nature 423, 541-‐545 (2003).
16.
Mitsui, K.; Tokuzawa, Y.; Itoh, H.; Segawa, K.; Murakami, M.; Takahashi, K. et al. The
homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and
ES cells. Cell 113, 631-‐642 (2003).
17.
Chambers, I.; Colby, D.; Robertson, M.; Nichols, J.; Lee, S.; Tweedie, S. et al. Functional
expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell
113, 643-‐655 (2003).
18.
Tada, M.; Takahama, Y.; Abe, K.; Nakatsuji, N.; Tada, T. Nuclear reprogramming of somatic
cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553-‐1558 (2001).
19.
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic
and adult fibroblast cultures by defined factors. Cell 126, 663-‐676 (2006).
20.
Yamanaka, S. Strategies and new developments in the generation of patient-‐specific
pluripotent stem cells. Cell Stem Cell 1, 39-‐49 (2007).
21.
Maherali, N.; Sridharan, R.; Xie, W.; Utikal, J.; Eminli, S.; Arnold, K.; Stadtfeld, M.; Yachenko,
R.; Hieu, J. TC.; Jaenisch, R.; Plath, K.; Hochedlinger, K. Directly reprogrammed fibroblasts
show global epigenetic remodelling and widespread tissue contribution. Cell Stem Cell 1,
55-‐70 (2007). Wernig, M.; Meissner, A.; Foreman, R.; Brambrink, T.; Ku, M.; Hochedlinger,
K.; Bernstein, B.E.; Jaenisch, R. In vitro reprogramming of fibroblasts into a pluripotent ES-‐
cell-‐like state. Nature 448, 318-‐324 (2007).
22.
Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-‐competent induced
pluripotent stem cells. Nature 448, 313-‐317 (2007).