An. Real. Acad. Farm. vol 79 nº 4 2013 - page 43

Óscar Miguel Rivera Borroto & col.
558
46.
Rivera Borroto, O. M.; Hernández Díaz, Y.; García de la Vega, J. M.; Grau Ábalo, R. d. C.; &
Marrero Ponce, Y. Novel similarity measures for the effective and efficient retrieval of
pharmacological data sets.
Afinidad
2011
,
68
, 50.
47.
Sheridan, R. P.; & Kearsley, S. K. Why do we need so many chemical similarity search
methods?
Drug Discov Today
2002
,
7
, 903.
48.
Willett, P. Data fusion in ligand-­‐based virtual screening.
QSAR Comb Sci
2006
,
25
, 1143.
49.
sity analysis.
Perspect Drug Disc Design
1997
,
7
, 31.
50.
for
Biotechnology
Information.
PubChem.
el 1 de octubre de 2013).
51.
of
Hea
Cancer
Institute.
/
ctubre de 2013).
52.
htt
53.
International Academy of Mathema
ht
/
(visitado el 1 de octubre de 2013).
54.
Daylight Chemical Information Systems.
octubre de 2013).
55.
Sunset Molecular Discovery. WOMBAT.
(
visitado el 1 de
octubre de 2013).
56.
Baykoucheva, S. A new era in chemic
iscoveryGate, and
Chemistry Central.
Online
2007
,
31 Issue , p16
, 16.
57.
Bender, A. Compound bioactivities go public.
Nature Chem Biol
2010
6
, 309.
58.
Rohrer, S. G.; & Baumann, K. Maximum unbiased validation (MUV) data sets for virtual
screening based on PubChem bioactivity data.
J Chem Inf Model
2009
,
49
, 169.
59.
Fourches, D.; Muratov, E.; & Tropsha, A. Trust, But Verify: On the importance of chemical
structure curation in cheminformatics and QSAR modeling research.
J Chem Inf Model
2010
,
50
, 1189.
60.
Johnson, M. A. A review and examination of mathematical spaces underlying molecular
similarity analysis.
J Math Chem
1989
3
, 117.
61.
Maggiora, G. M.; & Shanmugasundaram, V. In
Chemoinformatics
; Bajorath, J., Ed.; Humana
Press; 2004; p 1.
62.
Agrafiotis, D. K.; Bandyopadhyay, D.; Wegner, J. K.; & van Vlijmen, H. Recent advances in
chemoinformatics.
J Chem Inf Model
2007
,
47
, 1279.
63.
Wegner, J. K.; Fröhlich, H.; Mielenz, H. M.; & Zell, A. Data and graph mining in chemical
space for ADME and activity data sets.
QSAR Comb Sci
2006
,
25
, 205.
64.
Cuissart, B.; Touffet, F.; Cremilleux, B.; Bureau, R.; & Rault, S. The maximum common
substructure as a molecular depiction in a supervised classification context: experiments
in quantitative structure/biodegradability relationships.
J Chem Inf Comput Sci
2002
,
42
,
1043.
65.
Adamson, G. W.; & Bush, J. A. A method for the automatic classification of chemical
structures.
Inf Stor Retriev
1973
,
9
, 561.
66.
Willett, P.; & Winterman, V. A comparison of some measures for the determination of
inter-­‐molecular structural similarity.
Quant Struct-­‐Activ Relat
1986
,
5
, 18.
67.
Brown, R. D.; & Martin, Y. C. Use of structure-­‐activity data to compare structure-­‐based
clustering methods and descriptors for use in compound selection.
J Chem Inf Comput Sci
1996
,
36
, 572.
68.
Matter, H.; & Potter, T. Comparing 3D pharmacophore triplets and 2D fingerprints for
selecting diverse compound subsets.
J Chem Inf Comput Sci
1999
,
39
, 1211.
69.
Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.; & Weinberger, L. E.
Neighbourhood behaviour: A useful concept for validation of “molecular diversity”
descriptors.
J Med Chem
1996
,
39
, 3049.
70.
Siegel, S.; & Castellan, N. J.
Nonparametric statistics for the behavioral sciences
; McGraw-­‐
Hill; New York, USA, 1988.
71.
Todeschini, R.; & Consonni, V.
Molecular Descriptors for Chemoinformatics
; 2nd ed.; WILEY-­‐
y, 2009.
72.
.5; Milano, Italy, 2007. Este software se encuentra disponible en:
2013).
73.
oftware se encuentra disponible en:
(visitado el 1 de octubre de 2013).
1...,33,34,35,36,37,38,39,40,41,42 44,45,46,47,48,49,50,51,52,53,...190
Powered by FlippingBook