Perspectiva general sobre el proceso de desarrollo de fármacos…
559
74.
Li, Z.; Han, L.; Xue, Y.; Yap, C.; Li, H.; Jiang, L.; & Chen, Y. MODEL—molecular descriptor lab:
ysicochemical features of compounds.
are se encuentra disponible en:
(visitado el 1 de octubre de 2013).
75.
free
online
resource.
sitado el 1 de octubre de 2013).
76.
key technique in molecular informatics.
77.
Janecek, A.; Gansterer, W.; Demel, M.; & Ecker, G. In
Proceedings of the Workshop on New
Challenges for Feature Selection in Data Mining and Knowledge Discovery (FSDM 2008)
;
Saeys, Y., Liu, H., Inza, I., Wehenkel, L., Van de Peer, Y., Eds.; JMLR: Workshop and
Conference Proceedings; Antwerp, Belgium, 2008; p 90.
78.
Steinbach, M.; Ertöz, L.; & Kumar, V. In
New directions in statistical physics: econophysics,
bioinformatics, and pattern recognition
; Wille, L. T., Ed.; Springer-‐Verlag; Berlin, 2000; p
273.
79.
John, G. H.; Kohavi, R.; & Pfleger, K. In
Eleventh International Conference o Machine
Learning (ICML)
Cohen, W. W., Hirsh, H., Eds.; Morgan Kaufman; Rutgers University, New
Brunswick, NJ, USA, 1994; p 121.
80.
Watanabe, S.
Knowing and guessing: A quantitative study of inference and information
; John
Wiley & Sons Inc; New York, 1969.
81.
Roth, H. J. There is no such thing as ‘diversity’!
Curr Opin Chem Biol
2005
,
9
, 293.
82.
Böcker, A.; Schneider, G.; & Teckentrup, A. Status of HTS data mining approaches.
QSAR
C mb Sci
2004
,
23
, 207.
83.
Selwood, D. L.; Livingstone, D. J.; Comley, J. C. W.; O’Dowd, A. B.; Hudson, A. T.; Jackson, P.;
Jandu, K. S.; Rose, V. S.; & Stables, J. N. Structure-‐activity relationships of antifilarial
antimycin analogues, a multivariate pattern recognition study.
J Med Chem
1990
,
33
, 136.
84.
Zheng, W.; & Tropsha, A. Novel variable selection quantitative structure-‐property
relationship approach based on the
k
nearest neighbor principle.
J Chem Inf Comput Sci
2000
40
, 185.
85.
Dudek, A. Z.; Arodz, T.; & Gálvez, J. Computational methods in developing quantitative
structure-‐activity relationships (QSAR): A review.
Comb Chem High Throughput Screen
2006
,
9
, 1.
86.
Nath, R.; Rajagopalan, B.; & Ryker, R. Determining the saliency of input variables in neural
networks classifiers.
Comput Ops Res
1997
,
24
, 767.
87.
Koivalishyn, V.; Tetko, V. I.; Luik, A. I.; Kholodovych, V. V.; Villa, A. E. P.; & Livingstone, D. J.
Neural networks studies. Variable selection in the cascade-‐correlation learning
architecture.
J Chem Inf Comput Sci
1998
,
38
, 651.
88.
Todeschini, R.; Galvagni, D.; Vilchez, J. L.; Del Olmo, M.; & Navas, N. Kohonen artificial
neural networks as a tool for wawelength selection in multicomponent
spectrofluorimetric PLS modeling: application to phenol, o-‐cresol, m-‐cresol and p-‐cresol
mixtures.
Trends Anal Chem
1999
,
18
, 93.
89.
Burden, F. D.; Ford, M. G.; Whitley, D. C.; & Winkler, D. A. Use of automatic relevance
determination in QSAR studies using Bayesian neural networks.
J Chem Inf Comput Sci
2000
,
40
, 1423.
90.
Agrafiotis, D. K.; & Cedeno, W. Feature selection for structureactivity correlation using
binary particle swarms.
J Med Chem
2002
,
45
, 1098.
91.
Tetko, I. V.; Villa, A. E.; & Livingstone, D. J. Neural network studies. Variable selection.
J
Chem Inf Comput Sci
1996
,
36
, 794.
92.
Glen, R. C.; & Adams, S. E. Similarity metrics and descriptor spaces – Which combinations
to choose?
QSAR Comb Sci
2006
,
25
, 1133.
93.
Guyon, I.; & Elisseeff, A. An introduction to variable and feature selection.
J Mach Lear
Research
2003
,
3
, 1157.
94.
Hall, M.; Frank, E.; Holmes, G.;
, I. H. The WEKA
Data Mining Software: An Updat
95.
Machine Learning Group. Weka.
/
(visitado el 1 de
octubre de 2013).
96.
Tversky, A. Features of similarity
97.
Chen, X.; & Brown, F. K. Asymmetry of chemical similarity.
ChemMedChem
2007
,
2
, 180