José Carlos Menéndez, Mercedes Villacampa
610
8. CONCLUSIONES
Aunque existen todavía aspectos sin resolver, la aproximación basada en el
incremento de la actividad de las incretinas por vías directas o indirectas
constituye una de las vías más prometedoras para el tratamiento futuro de la
diabetes de tipo 2, uno de los mayores problemas sanitarios a los que se enfrenta la
sociedad actual.
9. REFERENCIAS
1.
Verspohl, E. J. (2012). Novel pharmacological approaches to the treatment of type 2
diabetes.
Pharmacol. Rev
. 64, 188–237.
2.
Pandey, R.; Kumar, N.; Yadav, M.; Nagpal, R.; Jain, S.; Yadav, M. (2013). Anti-‐diabetic
compounds and their patent information: An update.
Recent Pat. Inflamm. Allergy Drug
Discov
. 7, 35-‐48.
3.
Israili, Z. H. (2011). Advances in the treatment of type 2 diabetes mellitus.
Am. J. Ther
. 18,
117-‐152.
4.
Drucker,
D.
J.
The web site devoted to the study of the glucagon-‐like
peptides,http://www.glucagon.com (consultado el 02-‐08-‐2013).
5.
Kazakos, K. (2011). Incretin effect: GLP-‐1, GIP, DPP4.
Diabet. Res. Clin. Pr.
93S, S32–S36.
6.
Vahl, T. P.; Paty, B. W.; Fuller, B. D.; Prigeon, R. L.; D’Alessio, D. A. (2003). Effects of GLP-‐1-‐
(7–36)NH
2
, GLP-‐1-‐(7–37), and GLP-‐1-‐(9–36)NH
2
on intravenous glucose tolerance and
glucose-‐induced insulin secretion in healthy humans.
J. Clin. Endocrinol. Metabol
. 88,
1772–1779.
7.
Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R.
(2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis
platform.
J. Cheminformatics
2012
,
4:
17.
8.
Sinclair, E. M.; Drucker, D. J. (2005). Proglucagon-‐derived peptides: Mechanisms of action
and therapeutic potential.
Physiology
20, 357–365.
9.
Drucker, D. J. (2006). The biology of incretin hormones.
Cell Metabol
. 3, 153–165
10.
Elashoff, M.; Matveyenko, A. V.; Gier, B.; Elashoff, R.; Butler, P. C. (2011). Pancreatitis,
pancreatic, and thyroid cancer with Glucagon-‐Like Peptide-‐1–based therapies.
Gastr enterology
141, 150–156.
11.
Cho,Y-‐ M.; Merchant, C. E.; Kieffer, T. J. (2012). Targeting the glucagon receptor family for
diabetes and obesity therapy.
Pharmacol. Ther
. 135, 247–278
12.
Meier, J. J. GLP-‐1 receptor agonists for individualized treatment of type 2 diabetes mellitus
(2012).
Nat. Rev. Endocrinol.
8, 728-‐742.
13.
Yi, F.; Li, D.; Ma, W.; Du, Q. (2013). GLP-‐1 biology and GLP-‐1 based antidiabetic therapy.
J.
Chin. Pharm. Sci
., 22, 7-‐27.
14.
Lorenz, M.; Evers, A.; Wagner, M. (2013). Recent progress and future options in the
development of GLP-‐1 receptor agonists for the treatment of diabesity.
Bioorg. Med. Chem.
Lett
. 23, 4011–4018.
15.
Weber, A. E. (2004). Dipeptidyl peptidase IV inhibitors for the treatment of diabetes.
J.
Med. Chem
. 47, 4135-‐4141.
16.
Chyan, Y. J.; Chuang, L. M. (2007). Dipeptidyl peptidase-‐IV inhibitors: An evolving
treatment for type 2 diabetes from the incretin concept
. Rec. Pat. Endocr. Metabol. Immun.
Drug Discov
. 1, 15-‐24.
17.
Pei, Z. From the bench to the bedside: Dipeptidyl peptidase IV inhibitors, a new class of
oral antihyperglycemic agents.
Curr. Opin. Drug Discov. Devel
. 11, 512-‐532.
18.
Underwood, C. R.; Garibay, P.; Knudsen, L. B.; Hastrup, S.; Peters, G. H.; Rudolph, R.; Reedtz-‐
Runge, S. (2010) Crystal structure of Glucagon-‐Like Peptide-‐1 in complex with the
extracellular domain of the Glucagon-‐Like Peptide-‐1 receptor.
J. Biol. Chem
. 285, 723–730.
19.
Eng, J.; Kleinman, W. A.; Singh, L.; Singh, G.; Raufman, J. P. (1992). Isolation and
characterisation of exendin-‐4, an exendin-‐3 analogue, from
Heloderma suspectum
venom:
Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas.
J.
Biol. Ch m
. 267, 7402–7405.