An. Real. Acad. Farm. vol 79 nº 4 2013 - page 95

José Carlos Menéndez, Mercedes Villacampa
610
8. CONCLUSIONES
Aunque existen todavía aspectos sin resolver, la aproximación basada en el
incremento de la actividad de las incretinas por vías directas o indirectas
constituye una de las vías más prometedoras para el tratamiento futuro de la
diabetes de tipo 2, uno de los mayores problemas sanitarios a los que se enfrenta la
sociedad actual.
9. REFERENCIAS
1.
Verspohl, E. J. (2012). Novel pharmacological approaches to the treatment of type 2
diabetes.
Pharmacol. Rev
. 64, 188–237.
2.
Pandey, R.; Kumar, N.; Yadav, M.; Nagpal, R.; Jain, S.; Yadav, M. (2013). Anti-­‐diabetic
compounds and their patent information: An update.
Recent Pat. Inflamm. Allergy Drug
Discov
. 7, 35-­‐48.
3.
Israili, Z. H. (2011). Advances in the treatment of type 2 diabetes mellitus.
Am. J. Ther
. 18,
117-­‐152.
4.
Drucker,
D.
J.
The web site devoted to the study of the glucagon-­‐like
peptides,http://www.glucagon.com (consultado el 02-­‐08-­‐2013).
5.
Kazakos, K. (2011). Incretin effect: GLP-­‐1, GIP, DPP4.
Diabet. Res. Clin. Pr.
93S, S32–S36.
6.
Vahl, T. P.; Paty, B. W.; Fuller, B. D.; Prigeon, R. L.; D’Alessio, D. A. (2003). Effects of GLP-­‐1-­‐
(7–36)NH
2
, GLP-­‐1-­‐(7–37), and GLP-­‐1-­‐(9–36)NH
2
on intravenous glucose tolerance and
glucose-­‐induced insulin secretion in healthy humans.
J. Clin. Endocrinol. Metabol
. 88,
1772–1779.
7.
Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R.
(2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis
platform.
J. Cheminformatics
2012
,
4:
17.
8.
Sinclair, E. M.; Drucker, D. J. (2005). Proglucagon-­‐derived peptides: Mechanisms of action
and therapeutic potential.
Physiology
20, 357–365.
9.
Drucker, D. J. (2006). The biology of incretin hormones.
Cell Metabol
. 3, 153–165
10.
Elashoff, M.; Matveyenko, A. V.; Gier, B.; Elashoff, R.; Butler, P. C. (2011). Pancreatitis,
pancreatic, and thyroid cancer with Glucagon-­‐Like Peptide-­‐1–based therapies.
Gastr enterology
141, 150–156.
11.
Cho,Y-­‐ M.; Merchant, C. E.; Kieffer, T. J. (2012). Targeting the glucagon receptor family for
diabetes and obesity therapy.
Pharmacol. Ther
. 135, 247–278
12.
Meier, J. J. GLP-­‐1 receptor agonists for individualized treatment of type 2 diabetes mellitus
(2012).
Nat. Rev. Endocrinol.
8, 728-­‐742.
13.
Yi, F.; Li, D.; Ma, W.; Du, Q. (2013). GLP-­‐1 biology and GLP-­‐1 based antidiabetic therapy.
J.
Chin. Pharm. Sci
., 22, 7-­‐27.
14.
Lorenz, M.; Evers, A.; Wagner, M. (2013). Recent progress and future options in the
development of GLP-­‐1 receptor agonists for the treatment of diabesity.
Bioorg. Med. Chem.
Lett
. 23, 4011–4018.
15.
Weber, A. E. (2004). Dipeptidyl peptidase IV inhibitors for the treatment of diabetes.
J.
Med. Chem
. 47, 4135-­‐4141.
16.
Chyan, Y. J.; Chuang, L. M. (2007). Dipeptidyl peptidase-­‐IV inhibitors: An evolving
treatment for type 2 diabetes from the incretin concept
. Rec. Pat. Endocr. Metabol. Immun.
Drug Discov
. 1, 15-­‐24.
17.
Pei, Z. From the bench to the bedside: Dipeptidyl peptidase IV inhibitors, a new class of
oral antihyperglycemic agents.
Curr. Opin. Drug Discov. Devel
. 11, 512-­‐532.
18.
Underwood, C. R.; Garibay, P.; Knudsen, L. B.; Hastrup, S.; Peters, G. H.; Rudolph, R.; Reedtz-­‐
Runge, S. (2010) Crystal structure of Glucagon-­‐Like Peptide-­‐1 in complex with the
extracellular domain of the Glucagon-­‐Like Peptide-­‐1 receptor.
J. Biol. Chem
. 285, 723–730.
19.
Eng, J.; Kleinman, W. A.; Singh, L.; Singh, G.; Raufman, J. P. (1992). Isolation and
characterisation of exendin-­‐4, an exendin-­‐3 analogue, from
Heloderma suspectum
venom:
Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas.
J.
Biol. Ch m
. 267, 7402–7405.
1...,85,86,87,88,89,90,91,92,93,94 96,97,98,99,100,101,102,103,104,105,...190
Powered by FlippingBook