Regulación de la neurotransmisión glicinérgica…
447
5. AGRADECIMIENTOS
Este trabajo se ha realizado con la financiación del Ministerio de Ciencia e
Innovación (SAF2008-‐05436 y SAF2011-‐28674), la Comunidad Autónoma de
Madrid (SSAL-‐0253/2006) y la Fundación Ramón Areces.
6. REFERENCIAS
1. Melzack R.; Wall P.D. Pain mechanisms: a new theory. Science 150, 971-‐9 (1965).
2. Legendre P. The glycinergic inhibitory synapse. Cell. Mol. Life. Sci. 58, 760-‐93 (2001).
3. Zafra F.; Aragón C.; Olivares L.; Danbolt N.C.; Giménez C.; Storm-‐Mathisen J. Glycine
transporters are differentially expressed among CNS cells. J. Neurosci. 15, 3952-‐69 (1995).
4.
Aragón C.; López-‐Corcuera B.
Structure,
function and regulation of glycine
neurotransporters. Eur. J. Pharmacol. 479, 249-‐62 (2003).
5. Welchman R.L.; Gordon C.; Mayer R.J. Ubiquitin and ubiquitin-‐like proteins as
multifunctional signals. Nat. Rev. Mol. Cell. Biol. 6, 599-‐609 (2005).
6. Büttner C.; Sadtler S.; Leyendecker A.; Laube B.; Griffon N.; Betz H.; Schmalzing G.
Ubiquitination precedes internalization and proteolytic cleavage of plasma membrane-‐
bound glycine receptors. J. Biol. Chem. 276, 42978-‐85 (2001).
7. Fernández-‐Sánchez E.; Martínez-‐Villarreal J.; Giménez C.; Zafra F. Constitutive and regulated
endocytosis of the glycine transporter GLYT1b is controlled by ubiquitination. J. Biol.
Chem. 284, 19482-‐92 (2009).
8. de Juan-‐Sanz J.; Zafra F.; López-‐Corcuera B.; Aragón C. Endocytosis of the neuronal glycine
transporter GLYT2: role of membrane rafts and protein kinase C-‐dependent
ubiquitination. Traffic. 12, 1850-‐67 (2011).
9. Moore K.A.; Kohno T.; Karchewski L.A.; Scholz J.; Baba H.; Woolf C.J. Partial peripheral nerve
injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of
the spinal cord. J. Neurosci. 22, 6724–31 (2002).
10. Scholz J.; Broom D.C.; Youn D.H.; Mills C.D.; Kohno T.; Suter M.R.; Moore K.A.; Decosterd I.;
Coggeshall R.E.; Woolf C.J. Blocking caspase activity prevents transsynaptic neuronal
apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve
injury. J. Neurosci. 25, 7317–23 (2005).
11. Polgar E.; Hughes D.I.; Riddell J.S.; Maxwell D.J.; Puskar Z.; Todd A.J. Selective loss of spinal
GABAergic or glycinergic neurons is not necessary for development of thermal
hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain. 104, 229–
39 (2003).
12. Coull J.A.; Boudreau D.; Bachand K.; Prescott S.A.; Nault F.; Sik A.; De Koninck P.; De
Koninck Y. Trans-‐synaptic shift in anion gradient in spinal lamina I neurons as a
mechanism of neuropathic pain. Nature. 424, 938–42 (2003).
13. Coull J.A.; Beggs S.; Boudreau D.; Boivin D.; Tsuda M.; Inoue K.; Gravel C.; Salter M.W.; De
Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying
neuropathic pain. Nature 438, 1017–21 (2005).
14. Ahmadi S.; Lippross S.; Neuhuber W. L.; Zeilhofer H. U. PGE2 selectively blocks inhibitory
glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat. Neurosci. 5,
34–40 (2002).
15. Trebino C.E.; Stock J.L.; Gibbons C.P.; Naiman B.M.; Wachtmann T.S.; Umland J.P.; Pandher
K.; Lapointe J.M.; Saha S.; Roach M.L.; Carter D.; Thomas N.A.; Durtschi B.A.; McNeish J.D.;
Hambor J.E.; Jakobsson P.J.; Carty T.J.; Perez J.R.; Audoly L.P. Impaired inflammatory and
pain responses in mice lacking an inducible prostaglandin E synthase. Proc. Natl. Acad. Sci.
USA. 100, 9044-‐9 (2003).